
System-Level Transactions with picotm

Thomas Zimmermann
tdz@users.sourceforge.net

February 12, 2018

1 The Problems with Traditional Code

Our goal is to write software that works reliably under all cir-
cumstances. Besides correctness at the algorithmic level, this
requires correct handling of concurrency and run-time errors.
Both are notoriously hard to test and implement.
int fd0 , fd1 ; /∗ f i l e d e s c r i p t o r s ∗/
char obuf [1 0 0] ; /∗ output b u f f e r ∗/

w r i t e (fd0 , obuf , s i z e o f (obuf)) ;
w r i t e (fd1 , obuf , s i z e o f (obuf)) ;

This example program writes an output buffer to two files. If
the first write() operation succeeds but the second fails, only
one file will be updated and the program will enter an inconsis-
tent, and probably erroneous, state. Correctly returning to the
previous consistent state will become impossible at this point.
If there’s concurrent access to the files, the program’s result will
become unpredictable. Similar examples can be constructed for
memory access, data structures, or any other non-constant re-
source.

2 Transactional Execution

A transaction is a transition from one consistent state to an-
other consistent state; without the intermediate steps being
visible outside of the transaction’s context. This is known as
the ACID properties atomicity, consistency, isolation and dura-
bility. To achieve ACID properties, a transaction has to handle
run-time errors and concurrency of its contained operations;
exactly those pieces of the software that we just identified as
being problematic.

3 Phases of each Operation

Most operations, such as write(), can be split into different
phases. We call them execute, apply and undo.
When first called, an operation enters the execute phase,

where it allocates resources, acquires locks and checks for po-
tential run-time errors. If successful, the operation will enter
the apply phase where its effects become globally visible. If
unsuccessful, the operation will enter the undo phase, where all
setup from the execute phase is reverted.
For n operations in a row, phases can be rearranged. First

we perform all execute phases e1, e2, ... en. If successful, we
will perform all apply phases a1, a2, ... an. In unsuccessful,
we will revert execution with the undo phases un, ... u2, u1.
This scheme allows us to compose transactions from arbitrary
operations.

4 System-Level Transactions with picotm

picotm is a system-level transaction manager implemented in
highly portable C. It provides a generic framework to formalize
the execute-apply-undo scheme and to integrate a large number
of different modules and interfaces. All concurrency control

and error detection is performed internally, users only have to
implement application-specific algorithms and error recovery.
Re-implementing the example program puts all execute

phases between picotm_begin and picotm_commit. Note each
operation’s _tx suffix.
picotm_begin

/∗ execut ion phase ∗/
write_tx (fd0 , obuf , s i z e o f (obuf)) ;
write_tx (fd1 , obuf , s i z e o f (obuf)) ;

picotm_commit /∗ apply during commit ∗/
/∗ recovery phase ∗/
put_error_recovery_here () ;
p icotm_restart () ;

picotm_end

Execute phases perform concurrency control and error detec-
tion internally. Each operation’s apply phase is performed by
picotm_commit. Until commit, all changes are local and can
be reverted via the corresponding undo phase. After revert-
ing from a detected error, the transaction enters the recovery
phase where the application can attempt to repair the error and
restart the transaction.

5 picotm Modules

The picotm core library provides the building blocks for generic
error handing and concurrency control. On top of these prim-
itives, users can implement modules for their specific use case
and application. Out of the box, picotm comes with a large set
of available modules, such as

Software Transactional Memory Transactional access to sha-
red memory

Data structures Implements transactional lists, queues, multi-
sets, stacks

Memory management Provides transaction-safe C memory al-
location with malloc(), free(), et al.

C string and memory operations Provides C Standard Library
functions that operate on transactional memory, such as
memset(), strcpy(), et al.

File-descriptor I/O Offers transaction-safe access to files and
file-like structures on Posix systems, with functions such
as open(), close(), read(), write(), et al.

C math functions Transactional tan(), sqrt(), et al.

All available modules co-operate and can be mixed freely.
More modules are planned and will be added over time.

6 Obtaining picotm

picotm is available at picotm.org. It’s implemented in plain C
and currently supports Linux, MacOS X, Windows (Cygwin)
and FreeBSD. More systems are planned. The source code is
distributed under the terms of the MIT license.

mailto:tdz@users.sourceforge.net
http://picotm.org

	The Problems with Traditional Code
	Transactional Execution
	Phases of each Operation
	System-Level Transactions with picotm
	picotm Modules
	Obtaining picotm

